手机浏览器扫描二维码访问
大小和物理学院的差不多。
许青舟在图书馆转了一圈,熟悉情况,在角落的位置坐下。
对面是个带着圆眼镜的女生。
见许青舟坐下,对面的女生把自己的东西收了收,他点头表示感谢,随即拿出第一份论文《关于欧拉公式在波函数表示中的应用》。
【摘要:本文旨在探讨欧拉公式在量子力学波函数表示中的重要作用。波函数是量子力学中描述粒子状态的基本数学工具,它包含了粒子位置丶动量丶能量等物理信息】
在大学数学课程中,欧拉公式通常在复变函数论或高级微积分等课程中介绍,京大的教学计划里边,复变函数在大二开始学习,高级微积分则是大三的课程。
许青舟很快就沉入到翻译中,瞧着单词,遇到比较难以理解翻译的词语,就直接进入图书馆资料库查看相关内容。
不过,进程依旧有些缓慢,1个小时过去了,他仅仅推进了不到十分之一。
「呼~」许青舟吐了口气,揉了揉太阳穴。
也在这时,一支签字笔伸过来,戳了戳许青舟的胳膊。
他顺着手看过去,就看到对面女生有些不好意思,低声说道:「同学,你要是有空的话,可以请教一道数学题吗?」
闫思书也是没办法,这道题她已经嗑俩小时了,本来想问经常到图书馆的教授,可对方今天到现在都没来。
许青舟点了点头,「那过来吧。」
闫思书赶紧把手上的稿纸递过去。
在三维非欧几里得几何空间中,考虑一个曲面Σ,该曲面由参数方程定义如下:(x=ucos(v+u^2))(y=usin(v+u^2))(z=ln(1+u^2))
设切平面π上的任意一点为(Q(x,y,0))(由于切平面与xOy平面平行,z坐标为0),求出点(Q)到点(P(1,frac{pi}{4},ln2))在曲面Σ上的最短距离(d(P,Q))。
许青舟看了一眼,是微分几何和流形的题,很快脑海中就蹦出两个解法。
于是,拿着笔把解法写出来。
第一种,可以通过计算曲面Σ在点(P)处的法线与切平面π的交点得到,第二种则是需要使用到变分法或距离函数(d(P,Q))的梯度来求解最短距离。
大约2分钟,许青舟就搞定,把写得满满当当的稿纸递给女生。
「这麽快」闫思书诧异地接过稿纸,看着稿纸上面的答案,愣了一下,不仅仅解出来了,甚至还有两种?
这就是传说中老天爷赏饭吃的学霸吗又是被按在地上摩擦的一天。
「谢谢学长。」
「刚好放松一下大脑。」许青舟笑着摇头。
闫思书:「。」
为难了自己一天的东西,只是别人放松的工具
许青舟本来想解释自己大一,可对面的女生已经低下头,开始刷刷地写起来,只能先放弃了。
晚上9点半,图书馆的人不减反增,仅仅剩下十来个位子。
又过了10分钟,就连许青舟身旁的座位都被一个胖老头坐了。
闫思书小声地和许青舟身旁的胖老头打招呼:「顾教授。」
因为在图书馆,胖老头没说话,只是微微点了一下头,戴上眼镜,取出书签,继续看那本数院图书馆才收录的,叫《MathematicalThoughtfromAncienttoModernTimes》(古今数学思想)的着作。
许青舟的注意力仍然在论文上,沉浸在翻译中,不知过了多久,他耳边突然响起老教授的声音。
「同学,我能否看看你这篇论文?」
(本章完)
穿越到了龙珠世界的地球南都,外表看似小孩力气却异于常人的王却在思考一个问题,作为地球人的他,在龙珠世界到底有没有练武的意义 万一他扇动了蝴蝶的小翅膀,搞得孙悟空等人都集体变菜了怎么办,赛亚人或者弗利萨什么的,凭他这地球人的小身板可真心打不过啊 他迷茫,停留,直到有一天 s1db小白,考究党轻喷。。 s2书群48232o39o...
作品简介兵王邓飞回归都市,左右扶着女总裁,右手抱着御姐。小钱钱犹如洪水般的涌入囊中…如果您觉得邓飞张艺馨还不错的话,请粘贴以下网址分享给你的QQ微信或微博好友,...
沈哲子来到东晋初年,化身江南豪宗之子,良田万亩,家财万贯,仆役成群,起点罕见之高配穿越,可惜老爹是个造反惯犯。 衣冠南渡,五胡乱华,华夏之哀曲,汉祚之悲...
本人正在存稿穿书之我的男配君请多多支持呦!!!专栏求收藏一个孤儿穿越重生得到她之前想得到却缺失的,当她以为垂手可得时,她却现她阿玛是日后的大贪官怎么办?当她现这不止是这样的,当她现这是一个综琼瑶的世界怎么办?1本人是第一次写文,写的不好请多多指点2本人求收藏,求评论,求灌溉3请大家多多支持...
作品简介...
十年前,被人陷害,身陷牢狱几乎永不翻身。十年后,功成归来,战神入世必要天翻地覆!已成无敌之姿的陈天傲,回到了那个暗潮汹涌的小城。只想问一句谁能挡我!...